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1 Possible approaches to *He-‘He mixtures

1.1 *He impurity system in a superfluid ‘He: nearly an
ideal Fermi gas

Main parameters of the system

In this course, we will mostly consider liquid solutions of *He atoms in superfluid
*He (He II). The main parameters of the system are:

1. *He concentration:
& = N3/(N3+ Ny)

where Ny 4 [em™®] are the numbers of *He ("He) atoms per unit volume of the
system.

X~ AgNg

where Ag ~ 3 x 1078 cm is the atomic size.

z is the only small parameter of the system. At zero pressure (rather, at SVP-
saturated vapour pressure) x < 0.065. At the concentration z > 6.5%, the
solution demixes (at low temperatures) into pure *He and *He-*He mixture
with * = 6.5%. At higher pressures, the limiting concentration increases to
about 9%.

2. Temperature. We will assume that the temperature 7' in most of the cases
is less than T < 0.2 K so that one can nearly always neglect the presence of
thermal phonons and rotons in the system.

3. Degeneracy (Fermi) temperature for the *He component.

2% 32
Tr ~ @z— ~ (at SVP) ~ 2.6z} [K] (1.1)

where m* is the effective mass of *He quasi-particles in a concentrated mixture,
The Fermi momentum

pr = (37°Ns)3h ~ (B)Ag)z’ (1.2)

According to (1.1), it is possible to study the mixture in the "classical” Boltz-
mann regime, T' >> TF, the degenerate case T << Ty, and in all the interme-
diate region. Therefore, *He- He Il mixtures are the unique objects: I do not
know of any other systems which exist in such a wide temperature range —from
the ultra-quantum degenerate regime 7' << T up to the extremely "classical”
Boltzmann T >> T case.



4. ”Zero” (quantum) energy

h2
- mA3

Eo

This is the energy of zero (T' = 0) quantum oscillations of particles. Depending
on what one substitutes for the mass (ms or m*} and Ag, the value of Fy for
3He systems is somewhere between 1 K and 10 K.

5. Debye temperature

he
~ — A [¢
) A 201

¢ is the sound velocity. This, and the

6. Elastic energy
mc? ~ 0(0/Ey) ~ 150K

characterize bulk dense *He. The Debye temperature is a semi-quantum pa-
rameter, while the elastic energy is the purely classical one. The hierarchy of
the above energies is:

me? >> ki >> Ey > T, Tr

while the ratio 7'/T+ may be arbitrary depending on the temperature and e
concentration.

Single *He impurity in He II

Superfluid *He at 7' = 0 is an absolutely uniform and homogeneous system with-
out any excitations. What is more, it can be characterized by a macroscopic (station-
ary and homogeneous) wave function. He IT at T = 0 is an example of non- trivial
physical vacuum.

Therefore, the stationary states for any single impurity particles should be char-
acterized - like in standard vacuum, "empty space” - by plane waves, i.e. energy and
momenta states:

€

~t + ipr/h) (1.3)

Yimp = const. exp{—¢



where the energy, €, is a function of momenta, p. Unlike the standard vacuum, e
should not necessarily be p?/2m.

The wave functions for *He impurities should also have the form (1.3). Of course,
the real question is

What is the form of e(p) for *He impurities?

Unfortunately, the microscopic theory, at least at present, is unable to provide us
with an adequate — taking into account a rather high accuracy of experimental data
— answer. The reason is a very complicated spectrum of vacuum (Ie II) excitations,
and our rather primitive knowledge of *He-He II interaction. The parameters of
the spectrum contain both the direct interaction terms and all sequences of indirect
diagrams/processes — processes mediated by He II phonons and rotons.

Then, may be, we can determine the exact spectrum e(p) from comparison with
some experimental data — assuming that we can perform extremely accurate mea-
surements?

Unfortunately, again, the answer is NO. Below I will try to explain why.

Since our physical vacuum (He II) is absolutely isotropic, uniform and homoge-
neous, the spectrum of a single *He impurity can be expanded in even orders of the
momentum p:

P P2 Py
ep) = —A+ {1 +v(=)y +E(=) +--- 1.4
(p) o G +ECH) } (1.4)
where [ have chosen py = myc ~ Aio(:nuc2 /6) as a scaling parameter, my is the *He
atomic mass, ¢ is the sound velocity.
According to the current experimental data (at SVP):

1. A ~ 2.8 K. The negative sign at A in eq.(1.4) means that the energy of the
system lowers when a *He atom goes into *He thus ensuring the finite solubility
of *He in *He at T' = 0. At higher pressures A is somewhat larger.

2. The “He single-particle effective mass M =~ 2.34m3, ma being the mass of the
bare *He atom. This enhancement in the 3He effective mass means that the
motion of a *He impurity effectively involves an accompanying motion of some
"cloud” of *He atoms, or, in other words, excitation and absorption of 1He
phonon/rotons. The real propagator for a ®He particle contains all sorts of



phonon diagrams like
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Of course, the exact summation is impossible.

Curiously enough, at SVP

meaning that, roughly speaking, a *He impurity quasi-particle carries in its
motion a *He atom plus one *He atom. Of course, most probably, eq.(1.5) is
a pure coincidence. At higher pressures M increases, and eq.(1.5) is not valid
any more,

3. 7 is unknown. It looks like v is rather small (the "best” data — which are not
accurate at all - claim that v ~ 0.15 at SVP).

4. ¢ and higher order coefficients are not known at all.

Ideal gas of *He quasi-particles

The basic idea how to determine the parameters of the single- particle energy
spectrum (1.4) from experimental data is the following:

Suppose we perform very accurate experiments with extremely dilute mixtures.
Then we might ignore all the eflects caused by interaction of *He quasi-particles
between themselves and which should be proportional to the (square of) *He con-
centration, and, therefore, are concentrationally small for dilute mixtures. We could
measure several different properties of He-*He mixtures and compare the results
with the calculations for an ideal gas of non-interacting *He quasi-particles with the
spectrum (1.4) where the parameters A, M, v, £, --- should be considered as phe-
nomenological parameters. This comparison (the best fit) would give us the values of
the several parameters in the spectrum (1.4). Ideally, the more properties of *He-*He
we would measure (with more and more precision), the more of the parameters in
(1.4) we would get.

Let us illustrate this idea on the example of, say, energy E of a mixture (the cor-
responding measurements are the measurements of heat capacity and of limiting *He
concentration). If one may neglect the *He-*He interaction at low ®He concentrations,
then the energy (per unit volume) of the mixture is
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E :EQ+E] (1.6)

where Eq is the energy of pure *He, and E; is the energy of an ideal (non-interacting)
gas of *He quasi- particles:

By = [ e(p)n(p)dp/(2mh)° (1.7)
where n(p) is the usual Fermi-Dirac distribution for *He fermions,

n(p) = 1/[exp(e(p) — p)/T + 1}, (1.8)

¢(p) is the single-particle spectrum (1.4), x is the chemical potential for *He particles.

The calculation of the integral (1.7) with (1.4) and (1.8) is a standard and trivial
task. Before presenting the results, I want to point out that the proper parameteri-
zations in degenerate, T' << Tf, and Boltzmann, T' >> Ty, cases, are different. In
the degenerate cases the characteristic momenta of particles are the Fermi momenta
p ~ pr (1.2), characteristic velocities are the Fermi velocities, v ~ vp = pp/M, and
the energies — the Fermi energies, ¢p = p%,/2M. Therefore, at very low temperatures,
T << Tp, the energy (integral} (1.7) should look like

E —ANg + (0551 2MN3 + 0’.’12"}’ ( ) (19)

-I-Oélsf (f;F YANs + -

where ay1 = 3/5, a1z = 3/7, auz = 1/3, .... Since pr is proportional to the concen-
tration m%, we can rewrite (1.9) as

By A} = Az + Eo(Bua®® + B1o0™? + frac® + ) (1.10)

where the dimensionless coeflicients B;; are trivially related to M, v, £, ... and oy in
(1.9).

As we see, the energy (1.10) at 7' << TF is the expansion in the concentration
(to the power 1/3), 2'/3, with the coefficients being determined by the coefficients in
the single- particle spectrum (1.4).

At higher temperatures, in the Boltzmann T >> Tp domain, the characteristic
momenta, velocities and energies are the thermal momenta, velocities and energies:

ENT,prTI(Tm)%,UN’UT:(T/m)% (1.11}

Therefore, at these temperatures the expression for the energy (1.7) is an expansion in
temperature:

A T T T
EIAS =Ekox |—-—= +715 By + le(EO) + ’7’13(E0

T P+ (1.12)



where the dimensionless coeflicients +;;, like f;, in (1.10), are determined by M, v,
£, ..., and are of the order of 1.

The idea is to measure the energy, £ = Ey + F,, as accurately as possible, com-
pare it with the expansions (1.10) or/and (1.12) [or the corresponding expressions in
the intermediate temperature range|, determine from the best fit the coefficients 3y
or/and 7y, and thus get the data on A, M, 7, &, .... It looks reasonable, and one
may hope to gel very accurate data on the parameters of the single- particle spectrum
(1.4) assuming that the ezxperimental accuracy is desirably high. Unfortunately, this
statement is absolutely wrong, and it is hopeless to try to go beyond a certain approz-
imation (see below) despite a possible (even infinitely) high accuracy of experiments.
The reason is the

1.2 Interaction between 3He quasi-particles

We should not take into account any terms in the expanstons (1.10), (1.12) which are
smaller than the neglected terms which contain the interaction.

Of course, there is always some interaction between *He quasiparticles. It is
impossible to have exact microscopic description of the interaction just for the same
reasons as for the exact single-particle spectrum. The interaction contains not only
?direct” 3He-*He processes, but also the part mediated by phonons, rotons, etc. The

summation of all possible diagrams like

is absolutely unfeasible without any unambiguous and real small parameters [all sug-

4+ .-
gested parameters are very speculative and absolutely inapplicable for precise de-
scriptions with a definite accuracy].

What makes the situation even worse, is a not very small ratio of particles veloci-
ties v to the sound velocity ¢ (i.e. to the velocities of phonons), v/e < 1. As a result,
the motion of *He particles between the moments of emission an absorption of inter-
mediate (virtual) phonons is not negligible, and the phonon-mediated interaction of
‘He particles should exhibit strong retardation effects [similar to, but stronger than
retardation effects in interaction of relativistic particles in electrodynamics]. This
makes the possibilities of precise theoretic descriptions even much less probable.

Therefore, we have to deal with the interaction in the same way as with the single-
particle spectrum: we have to introduce a reasonable/proper parameterization, and
hope to find the corresponding parameters from some precise experiments.

Taking the interaction into account, the expression for the energy of the solution
(1.6) should be rewritten as
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E=FE+E +E,+Es+--- (1.13)

where Ky is, as before, the energy of pure *He, K is the single-particle (ideal gas)
contribution (1.7), Fs, Es, ... are the contributions of the two-particle, three-particle,

etc. interactions. Schematically, the terms E,, Es, ..., can be written as
dS dspr ,
By = (2 Tz) Ul?(pa ) ( )n(p) (1'14)

B B d?
E;;:/ pr1a°p2 p3U123(p1,P2,P3)n(p1)n(p2)n(p3) (1.15)

(27h)°
and so on, where Uy is the potential of two-particle interaction, [/j33 — for three-
particle processes, etc.

Note, that though we can have pretiy reasonable {qualitative) ideas on how Uy,
might look like, the terms like U/;53 and higher are beyond any reach. This gives us
a real limit on the accuracy for all, even future, theories.

What we can do, is to parameterize Upp in eq.(1.14), calculate the integral, and
compare the results with eqs.(1.10), (1.12).

The easiest way of parameterization is a simple general Taylor expansion:

Uiz(p1,P2) = Uiz(p1, pa,cos x) = (1.16)
= Uo(x) + Un(x ) -+ Uz(x) ot Ua(x)

PPz
Po

+U4(x) +U5()

Since at low temperature T << Ty, the characteristic values of both p; and py are of
the order of pp ~ (H/Ag)aza and the integral (1.14) with Uy, (1.16) has the structure
of the density expansion in s

By A3 = Ega* (B + Proe® + Braxs + Braz +---) (1.17)

where the dimensionless coefficients 3 are given by simple combinations of angular
integrals of the function U; (1.16) scaled by Ep. By the order of magnitude, i in
eq.(1.17), like B in eq.(1.10), are of the order of 1.

It is obvious, that the concentration expansion for three- particle contributions,
Es, starts from the term 23, Therefore the terms with 314 and higher in eq.(1.17),
and (13 and higher in eq.(1.10) should be neglected when making comparison even the
most precise experimental data: these terms are of the same order (or even smaller)
as some already neglected contributions. This means, that we can hope to learn from
the experiment only the parameters A, M, v in the single-particle spectrum (1.4},
and only the terms up to the second order in the two-particle interaction (1.16).

At first glance, it seems that the situation in the non- degenerate (Boltzmann)
case is much more encouraging: here the expansion in concentration (interaction)
differs from the expansion in momenta which is an expansion in temperature.

In this case, E; has the from (1.12), B, (1.15) with Uy, (1.16) gives us

9
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By A® = Eyz? (’)’21 +722(E—G); + ’723(E—0) + ’)’24(E—0)

e

+) (1.18)

while Fj starts from the terms z°. Therefore, one might hope to go to extremely low
concentrations and try to recover, first, all terms in £, (which are proportional to z),
then —F, (proportional to z?), etc.

However, this is not realistic for both fundamental and practical reasons. The
fundamental reason is related to the changes in phonon spectrum due to presence of
3He impurities. The phonon contribution to the energy is also an expansion in *He
concentrations and energies:

Epn = 9(2)4 (1 + 26 + 512£ + o]+ 26 + Smi +-- ]-I-) (1.19)
g Ey E,

Since the *He/phonon renormalizations (6 are unknown, the expansion for F; (1.12)
is meaningful only up to the term 73, while (1.18), in case of vanishingly small
concentrations becomes completely meaningless.

And the practical limitation is due to the fact that in order to be able to have
the reliable data on impurity concentrations z up to the terms (T'/Fg)™, we have to
perform precise measurements at concentrations

z < (1) Eg)"

which is not easy, since £y > 1 K and 1" should be low enough in order not to involve
thermal phonons.

Conclusion

It is possible to extract — even from the most precise experiments — only the first
three terms in the single-particle spectrum and two-particle interaction.

We have an additional problem:
We know how to parametrize the spectrum: eq.(1.14) looks quite reasonable. But
how to deal with an interaction in order

1. not to go beyond the accuracy?

2. not to use ugly expressions like (1.16)7

The answer is that we should not operate with the interaction potential at all.
According to statistical physics and kinetic theory, an intelligent way to introduce
the interaction is to not do deal with an interaction potential, but to work with the
exact scattering amplitude (or T~ and S—matrices, or vertex part/function, efc.).
In our case it is not only proper, but also makes the things easier!
In our case of 3He-'He mixtures, a real small dimensionless parameter is

pA /R <1 (1.20)

10



According to standard quantum mechanics, the scattering amplitude of slow particles
with a relative angular moment £ of orbital motion is proportional to

fe o p*

According to above arguments, we can reliably introduce only the first three terms in
(1.20) in the interaction. Being translated into the language of scattering amplitudes,
this means that we should consider only the s-wave scattering with the amplitude

fo=—a[l+c0,8)p" + 00", (1.21)

and the p-wave scattering with the amplitude

fo = bocos ¢p?[1 + O(p*)] (1.22)

Therefore, we have only constants a (the scattering length), by and the function
(0, ).

Unfortunately, because of retardation effects in the s-wave channel, the structure
of ¢(8, ¢) is not very clear, and this term — though it is a legitimate term! — should
better be neglected. By the same reason, at least at present, one should not count
on getting the data on by from the experiments when the contribution of the s-wave
scattering is not negligible. Therefore,

Conclusion

In most of the cases the only legitimate form of the spectrum is

2

e=—A+§gu+ﬂ§m (1.23)

and for the scattering length — a constant
f=—a (1.24)

In cases when, like in high magnetic field (see below), the s-wave scattering becomes
ineffective, the dominant role is played by the p-wave scattering with

J = bep*cos ¢ (1.25)

One can get from experiments only the values of A, M, v, a, and, in high magnetic
fields — by.

The accuracy is pra/h ~ z¥ at low temperatures (unfortunately, z% >> a; for
example, when z = 6.5%, @3 is only ~ 0.4), or = and 7'/ Ej at much lower concentra-
tions.

Note, that even if the scattering amplitude is a constant (1.24), this does not
mean that the interaction potential is a constant or that the interaction function (see
below) will not have any angular dependence.

11



2 Main properties of 3He-‘He mixtures

2.1 Thermo- and hydrodynamics

If one wants to have a simple (but, of course, not very accurate) estimate of any
thermodynamic property, the easiest thing to do is to make an ideal gas estimate
for a gas of 3He quasi- particles. I will illustrate it on the example of a limiting
concentration (demixing concentration) for the mixture at 7' = 0.

At zero (SVP) pressure one has at equilibrium *He-*He mixture, 3He liquid and
3He vapour. Therefore the chemical potentials for *He particles in all three phases

are equal

M3v = H34 = U3 (2.1)

On the other hand, the chemical potential of a degenerate Fermi liquid/gas at T =0
is equal to its Fermi energy. Schematically, the picture corresponding to (2.1) looks
like this:
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At T = 0 all the *He energy levels are filled up to Er = g (= 0 the chemical potential
of vapour at 7' — 0) for both, *He and He-*He. The difference between *He and
3He-“He is due to different densities of state (i.e., effective masses m* for *He quasi-
particles in a mixture and m} in pure *He are different), and different positions of
lowest levels (binding energies), which are —A and —A — A’. Now we can rewrite

eq.(2.1) as

12
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P%?qa
0 + Prn (2.2)

2 2
= ....A 4 o™ (37T2N3)§
! R 2 2 i 2 2
A+ %(377 N3)3 - 2?7?,;(37{' N30)3 (23)

where m* and my are the *He effective masses in a mixture and in pure *He, N; and
Nag- 2He densities in dilute and dense phases. In principle, egs.(2.2), (2.8) may be
considered as definitions of A and A/

In the ideal gas approximation for a mixture, one can use the spectrum (1.23)
without 7, and assume that the effective mass of *He quasiparticles practically does
not depend on *He concentration and, therefore, is equal to its limit M at z — 0:

h?

A = m(SWzNg)%
i.e. the limiting concentration of the mixture is equal to
1 A 3
BN — o - \z 2.4
A== oG ay) (24)
or, starting from (2.3),
2
M 2 A 1 8
= ¢ —(NsAd)s — 2.5
z {mg( 30Ap)* h2/2MA§(37r2)§} (2.5)

where A3 is the atomic volume in *He-*He mixtures. Since z is relatively small while
both terms in the curly brackets have "normal” orders of magnitude, these two terms
are close to each other which gives a reasonable estimate for A’. The main inaccuracy
in (2.4), (2.5) was related to an assumption m* = M.

However, since our approximation for the interaction (1.24) — which is the only
one adequate for the spectrum (1.23) — is not very complicated, it is not very difficult
to go beyond the ideal gas approximation, and to include the interaction.

Here one encounters for the first time a very important difference between degen-
erate (1" << Tf) and non-degenerate (Boltzmann) T' << Ty gases:

While for dilute Boltzmann gases the interaction function is proportional to the
exact scattering amplitude (T-matrix), for degenerate dilute gases (and Fermi liquids)
the interaction function is somewhat more complicated.

Let us illustrate it on the example of our (constant) scattering amplitude {1.24).
In dilute Boltzmann gas the free energy F with the T-matrix (1.24) is equal to

irak? N Epd®p
Fo= Fy+ Fia+ i n(p)n(p’) (2nh)° (26)
rah’
= oo+ Fat Fiy, Foe= TNg
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where Fy, is the free energy of pure YHe, Fy; is the free energy of the ideal gas of
*He quasiparticles with the spectrum (1.23), and for the interaction correction Fi
we were able to take the T-matrix out of the integral (cf. eq.(1.14)) benefiting from
the independence of the amplitude (T-matrix) of momenta.

In a degenerate gas (or, what is the same, low-density Fermi liquid) the situation
is more complicated because

¢ the Fermi-liquid interaction is not the 7T-matrix (or the vortex function T'X)
but rather a somewhat different quantity, I'*, which coincides with I'* {or 7)
only in the linear approximation.

o the difference between the interaction potential and the T-matrix leads not to
z® terms as for a Boltzmann gas (2.6), but to much smaller — and not negligible

1
2. g3,

— terms

Therefore, the proper expression for the free energy (or energy, since £ = F

at T = 0) of a nearly ideal Fermi gas with the single-particle spectrum (1.23} and
two-particle interaction with the amplitude (1.24) has the form

2 2 3
o AL PP 2d’p
p=tot [ 8+ Zoa o) a2 .1
drak? &Ppdp
_ 32n%a*h* 1 n(p1)n(pa)n(ps) Cpid°pad®ps
M Pi+od—pi—pi (27Rh)°

The main difference between (2.6) and (2.7) is the third term in (2.7) which would
be beyond the accuracy for the Boltzmann gas.

The first two terms in (2.7) are exactly the same as in eq.(2.6). If one wants
to have a uniform and general description for the whole temperature interval from
ultralow to high temperatures, one should restrict oneself to these two terms. Then
one would have a very general description, but the price would be a not very high
accuracy everywhere. If one wants to have a more accurate description, one should
always keep in mind that the

main corrections for different temperature intervals have very different origins.
The main correction in one of the temperature regions looses its importance in an-
other one, becomes illegitimate and beyond the accuracy, and should not be taken into
account at all.

I deliberately spent so much time and put such an emphasis on the question
of accuracy. The thermodynamic calculations themselves are pretty standard and
technically not very sophisticated, while understanding of their accuracy is much less
trivial.

With the expression (2.6), (2.7) for the thermodynamic potentials, we can calcu-
late all the thermodynamic quantities directly. However, for the degenerate case (2.7)
it might be more useful tutorially and sometimes more convenient, to calculate first

14



the Fermi liquid function (the Landau function), and then calculate all the quantities
using the standard expressions of the Fermi liquid theory.

The Fermi liquid function (the Landau function) is, by definition, the second
(variational) derivative of the energy (in our case (2.7)) over the distributed function

_ §°E
dng(p)éns(p')

where I - for the first time — have explicitly included the spin indices/variables & into
the distribution function nz(p) and into the Landau F- function.

The calculation of derivatives (2.8) for the energy (2.6) is trivial: of course, the
second derivative of the terms Fy and the first integral (linear in n) is zero, the second
integral (quadratic in n) provides a constant, and the second derivative of the third
integral leaves only one n in the integrand making the integration easier:

Ffm'(pa p’) (2'8)

Faa’(p: p’) = Foa"(pFag) = ‘I (29)
2
zzjf(1—353+
2rah®

1 — 2
i 2A {2 + ww tanh™! w — (1 — wtanh™ w)&'&"} \

where A = pra/nh ~ zE, w= sin(6/2).
Several comments to eq.(2.9):

e Though the scattering T-matrix (amplitnde (2.14) does not depend on mo-
menta/scattering angles, the Landau F-function (the effective interaction func-
tion) strongly depends on angles § between the momenta of interacting quasi-
particles.

e Though the "bare” scattering amplitude (1.14) corresponds only to the s-wave
scattering, the resulting effective interaction (2.9) contains all angular harmon-
ics (including, e.g., the p-wave channel).

o ITigher angular harmonics in the effective interaction (2.9) contain an additional
small factor A = ppa/mh in comparison with the main (constant) terms for the
effective s-wave scattering.

And a comment of a different type:

¢ In principle, one can use a Fermi liquid like approach even at higher tempera-
tures, in the domain of Boltzmann gases (the so- called concept of "statistical
quasi-particles”). However, to do so for *He-*He mixtures, one should restrict
oneself only to the first (constant) term in eq.(2.9); the rest would be beyond
the accuracy (in some sense, this is a re-formulation of the comment made after

eq.(2.7)).
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With the explicit expression for the Fermi liquid function (2.9}, the calculation
of all thermodynamic quantities becomes trivial, and should be performed according
to the standard rules of the Landau theory of Fermi liquids. As a result, all the
observables become concentration-dependent through the parameter A = ppa/wh ~
z% in (2.9). T will not go here into details of the calculations, and will give below
only few results (at T' — 0) mostly for the thermodynamic quantities which do not
contain large masking contributions coming from pure ‘He.

1. Effective mass m* of (dressed) Fermi liquid quasi- particles is related to the
(bare) mass M of a single ®He excitation as

2
m* =M [1 + E)\2(71112 1)+ 27%1] (2.10)
15 Po

2. The osmotic pressure in a system of two cells (one with pure “He, = 0, and
another with a mixture *He-*He, x # 0) connected by a superleak permeable
only for a superfluid component *He, is equal to

2 rf 8 12 10 PF
II=—-—== — —2In2 .
S ANy l1+3)\+ V(U= 2In2) ~ 2y S (2.11)
3. The normal density is
pr = MN; 1+ 29(pp/po)’] (2.12)

4. The second sound velocity (the velocity of hydrodynamic sound in the gas of
3He impurity quasi-particles) is

v
— 2 P

2= 3M2 [l+2)\+ (1 —2im2) - %5 (2.13)

5. The magnetic susceptibility is

Xid 16
—x O —2) — 1‘“5“"2(2 +1n2), (2.14)

4

where x( ) is the diamagnetic susceptibility of *He, y.q is the susceptibility of

an ideal gas.

Next 5 curves allow one to compare experimental data on chemical potential,
effective mass, osmotic pressure, magnetic susceptibility, and spin diffusion with the
above formulae. For the sake of comparison, the dashed curve for the chemical
potential shows its value in the ideal gas approximation without any interaction
corrections.
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2.2 Kinetics: transport and HF phenomena

To a large extent, the theory of transport in *He-1He mixtures is formally the same
as for transport properties in a (dilute) gas of *He quasi-particles while the influence
of superfluid *He is reduced to background (vacuum) renormalizations of parameters.
Therefore all the transport coefficients (viscosity n, thermal conductivity «, spin
diffusion D, and sound attenuation a”) are given by standard gas expressions and
are inversely proportional to a®. For example,

1 rk
Basically, the above theory is a straightforward generalization of standard approaches
to slightly non-ideal degenerate or Boltzmann gases. The influence of the *He back-
ground was hidden in and reduced to vacuum renormalizations of the effective mass
and scattering length. It looks like one can forget about “He the moment one learns
the values of M and e.

The presence of *He becomes much more important when one tries to approach
collective phenomena (oscillations). Here the coupling between ‘He and *He becomes
much more complicated because all the *He effective parameters like A, M, a, v, etc.
depend explicitly on the density of the *He superfluid background, N;. Therefore,
any changes in *He density lead immediately to changes in state of *He component
resulting in coupling of the equations, i.e. in mutual drag effects and coupling of
oscillations.

This coupling is due to changes, e.g. in A or M, with changes 6 N, of Ny:

SA = (BAJON,)EN,, (2.16)
§M = (BM/ON)SN;,

and so on. Most of such derivatives are absolutely unknown except for the most
important one

2
98 §9gTe

N, N, (2.17)

where ¢ is the sound velocity in pure *He. Fortunately enough, the main (in ®He
concentration) terms for coupling of oscillations correspond to the mechanism (2.17)
as a sole source of coupling. Unfortunately, this leads to some additional limitations
for the accuracy of calculations.

Now I will briefly list all possible collective modes:

1. First sound: low-frequency acoustic (density) oscillations close to the usual
first sound in pure *He. The *He component is responsible for small changes in
the sound velocity, but is completely (at low temperatures) responsible for the
sound attenuation (via viscosity and thermal conductivity).

2. Second sound. Roughly speaking, acoustic (density) oscillations in a gas of He
quasi-particles. At T =0, s3 & vp/V/3.
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3. HF modes cannot propagate in the Boltzmann region because Qf_sffoﬁg colli-
stonless (Landau, or Cherenkov) damping. R

4. Zero sound modes cannot Propagate even in degenerate *He subsystem because
of

(a) attraction (unlike pure %Hel) in the s-wave channel.

(b) coupling to *He, and small values of higher harmonics of the Landau F-
function.

5. The only possibility is the symmetric m = ( ("longitudinal”) spin zero sound
(= longitudinal spin wave). However, since the Fermi liquid interaction is con-
centrationally small, the velocity of the wave, v, is exponentially close to the
Fermi velocity vy,

U —vp = vpexp(~1/]) (2.18)

Therefore, the real danger for an existence of such a mode comes from the
collisionless (= Landau = Cherenkov) damping. Such an attenuation s pro-
portional to the number of particles n(u) moving in phase with the wave (thus
being able to absorb a quantum of the wave). Therefore, in order not to expe-

rience a strong damping, the velocity of the wave, u, should be outside (see the
figure)

h(v) 4
r &r/zrpw /‘;“F
o —3 J

of the region of the thermal smearing of the Fermi step. Mathematically this is
equivalent to the following inequality for the temperature

T << Trexp(—1/|A]), (2.19)
or, numerically,
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3. HF modes cannot propagate in the Boltzmann region because of strong colli-
sionless (Landau, or Cherenkov) damping.

4. Zero sound modes cannot propagate even in degenerate *He subsystem because
of

(a) attraction (unlike pure 3He!) in the s-wave channel.

(b) coupling to *He, and small values of higher harmonics of the Landau £-
function.

5. The only possibility is the symmetric m = 0 ("longitudinal”) spin zero sound
(= longitudinal spin wave). However, since the Fermi liquid interaction is con-
centrationally small, the velocity of the wave, u, is exponentially close to the
Fermi velocity vp,

u — vp = vpexp(—1/2A) (2.18)

Therefore, the real danger for an existence of such a mode comes from the
collisionless (= Landau = Cherenkov) damping. Such an attenuation is pro-
portional to the number of particles n{u) moving in phase with the wave (thus
being able to absorb a quantum of the wave). Therefore, in order not to expe-
rience a strong damping, the velocity of the wave, u, should be outside (see the
figure)

of the region of the thermal smearing of the Fermi step. Mathematically this is
equivalent to the following inequality for the temperature

T << Trexp(—1/|A]), (2.19)
or, numerically,
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3.6
TimK] << 4.2 -10°z exp(——
z3|al

) (2.20)

with a in A.

At first glance, eq.(2.20) looks like an ordinary restriction for the temperature.
The situation is not that simple. In reality, the temperature (2.20) lies below the
superfluid transition temperature for “He subsystem (see below). It is known that
the longitudinal spin wave cannot propagate below such a transition: the Cooper
pairing is accompanied by the formation of pairs of particles with opposite spins thus
making impossible the formation of quanta of longitudinal spin waves which are the
correlated states of pairs of particles with parallel spins.

However, as we will see in the next section, that the situation is not hopeless:
one still can observe such a mode in very weak magnetic fields slightly above the
superfluid transition in 3He component.

2.3 Desirable future experiments

The only reliable information we have is the information at zero (SVP) pressure.
According to experimental data

23ms <M < 2.6ms (2.21)
054A< —a < 1.24
7 A1

The accuracy is not high, especially for a. It looks like M and {—a) increase with
pressure. One needs more accurate experiments preferably at low *He concentrations
(z < 0.1%) and temperatures.

From this point view the most desirable experiments are

1. Any accurate experiments at higher pressures!

2. Osmotic pressure: a good experimental possibility especially for M, and less —
for ¢ and ~.

3. Sound attenuation, viscosity and

4. Spin diffusion can provide reliable and accurate information on a.

5. Second sound velocity: a good way to obtain M.

6. Magnetic susceptibility: most of old experiments are inaccurate and unreliable.

7. Bulk and wall values of 1}: the systematic study of T is very important for
any experimental program on spin- polarized mixtures.
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All these experiments will not (most probably) lead to an observation of some
new and unexpected effects, but should be a base for any consistent future program.

The key factor in obtaining the best values of parameters is the *He concentration.
One must always keep a proper balance: the accuracy of experiments decreases with
decreasing concentration while the theoretical description becomes more accurate.

3 Superfluidity of *He in He-*He mixtures

3.1 Transition temperature: is there any hope?

The honest answer is that nobody knows. One should not believe in any numbers
(and in most of the cases — even in orders of magnitude) for T, given by theorists.
This does not mean that the underlying theories are dead wrong: even if some theory
is basically correct and provides one with a physically adequate picture, the accuracy
of numerical estimates for T, is not even low - it is simply unknown,

The situation now is somewhat analogous to what was going on before the exper-
imental discovery of the superfluid transition in pure *He in early seventies. Now, as
then, different predictions for 7, differ by several orders of magnitude, and fill (prob-
ably, with normal distribution) the interval from 107® K up to the temperatures just
slightly below the current record (whatever it is) in ultra-low temperatures. What is
more, like in pure 3He, even after the 3He superfluidity in mixtures will be observed,
we will eventually have a perfect description of the corresponding superfluid phases,
but the calculations of T, will, most probably, remain unreliable.

As of now, we have a wide range of approaches starting from exact statements
(but with narrow range of applicability) to some very wild speculations. Below I will
try to present a somewhat balanced picture.

At first, [ will make several statements, and then will comment on them, and
discuss some consequences.

First, what is so special about the *He superfluidity in He-*He mixtures? Why
should we be so excited about it except for a somewhat selfish reason that it is one of
the very few unclear phenomena at ultra-low temperatures? To answer this question,
we should understand why the corresponding superfluid phases will be very different
from pure *He or ‘He.

The superfluid phases of *He in *He-*He mixtures will be the phases:

o With two different condensates (*He and *He ). The only other system with
two condensates is a neutron star where one has neutron and some proton
condensates. The astrophysical implications are obvious. Other consequences
of the presence of two condensates are

— mutual drag effects
— complicated quantization rules for vortices

— new collective modes

¢ With superfluidity of non-charged fermions resulting in
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— the absence of the Meissner effect
— unusual (paramagnetic) response to a magnetic field

— lack of cyclotron motion, gauge invariance, etc.
¢ Without impurities, which opens the possibilities for different types of
- unconventional pairing.

e But with the attraction in the s-wave channel which makes the system very
different from pure ®He, and closer to unconventional BCS superconductors.

Now I will explain why it is impossible to give a reliable estimate for T, even
assuming that one has a perfect understanding of the coupling processes.

*He component of a mixture is a low density system even at highest concentra-
tions/pressures. Therefore any reasonable theory should be, at least partially, a weak
coupling theory. The equation for T} in all weak coupling models/theories/approaches
has the form

T, ~ Eexp(~1/g) (3.1)

where the cut-off (scaling) energy E S Tp, and the coupling constant g is given
by some combination — depending on a theory — of interaction parameters and the
density of states at Fermi energy.

Suppose, we have some uncertainty &g in the value of g. How will it be reflected
in our prediction for 7.7

Ty - b9) = Bexp(—— 1) = To)(Ta i (3.2)

Therefore, the small correction §g will not change the order of magnitude of T,(g)
only if

6g/9] << Te(g)/Tr (3.3)

From all theoretical estimates (and our experimental experience as well) we know
that

T,/Te ~ 1072 (3.4)
Therefore, in order to predict even the correct order of magnitude of T, one has to
understand all the details of the interaction (and know the densily of states) with the

accuracy higher than 0.1%! Such a claim would be, mildly speaking, too optimistic.

Nevertheless, it is possible to make several definite statements.
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. The s-wave scattering amplitude of bare *He quasiparticles is negative, meaning
that there is an attraction in the s-wave channel. Therefore, at low enough
concentrations and magnetic field, the superfluid transition will be caused by
the usual s-wave Cooper pairing and will be described by the standard BCS
theory with g in (3.1)

g ~ lalp/h ~ 3 (3.5)

. The polarization of the spin system will suppress the s- wave pairing even at
relatively low polarization. Then the next candidate for the transition will be
the p-wave pairing, and phenomenologically the superfluid phase will resemble
the A; phase of pure *He.

. At low concentrations and polarizations the p-wave pairing will originate not
from the p-wave contribution byp® cos ¢,

g~ (app/h)y’ ~z, (3.6)

in the scattering amplitude of bare particles (1.22), but from p-wave-like con-
tributions coming from the full interaction function originating from the s-wave
channel with the interaction constant,

g ~ (app/mh)? ~ o5, (3.7)

larger than for the bare p-wave interaction (3.6). The appearance of the p-
wave-like contributions from the s-wave interaction is somewhat similar to an
appearance of all angular harmonics in the effective interaction in the second
order s- wave interaction (2.9). (See also the comment after (2.9)).

. At higher concentrations/pressures (but zero polarizations), I still believe in the
dominant role of s-wave pairing (g (3.5) is still considerably larger than (3.6) or
(3.7)), but, of course, this statement is an extrapolation and cannot be proved.
The opposite statements are not (and cannot be) proved either, and are based
on less reliable arguments, especially taking into account the above (Section 1
and 2) discussion on possible parameterizations of the interaction.

. The p-wave transition temperature will have a non- monotonic dependence on
polarization with a maximum somewhere around 30% polarization.

22



Qualitatively, the phase diagram, as I see it, should look like

T

,o—u)aoe

CA)

=07 30%

From extremely rough BCS-type estimates (taking into account a very large
change in limiting solubility of *He with polarization; see below) I cannot expect
the p-wave transition temperature to be above 50 pK; most probably, it is much
lower. However, we have 3 variables: concentration, pressure, and polarization, and
nobody knows where exactly to look for the absolute maximum in 7. I expect it to
be at zero polarizations and at highest concentrations. Another (local) maximum is
at polarizations about 30% and high concentrations.

Below I will mostly dwell in the left hand side (s-wave BCS side) of the above
phase diagram.

The BCS prediction is

polavisation
-

20v(-$ )ahsm.m

2T wh
_ 22 _ 3.8
¥ w(e)STFexP{ 2PF|0|} (3.8)
or, numerically (at SVP)
1.8

T.[K] = 0.71z% exp(———) (3.9)

la|z3

with @ in A. The exact value of effective mass (i.e. Tr) is not that important (the
uncertainty of several percent in the coeflicient 0.71 is not very crucial), but, since the
exponent 1.8/ zs |a| is rather larger, the whole equation (3.9) becomes very sensitive to
even tiniest changes in a. Here it is even important what is z: N3/N, or N3/ (N3+Ny)!

Let us illustrate it on the basis of available information on a (see the table).
Of course, one should expect that the values of a obtained from different types of
experiments in different conditions by different groups should slightly differ from each
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Qualitatively, the phase diagram, as I see it, should look like

From extremely rough BCS-type estimates (taking into account a very large
change in limiting solubility of *He with polarization; see below) I cannot expect
the p-wave transition temperature to be above 50 pK; most probably, it is much
lower. However, we have 3 variables: concentration, pressure, and polarization, and
nobody knows where exactly to look for the absolute maximum in T,. I expect it to
be at zero polarizations and at highest concentrations. Another (local) maximum is
at polarizations about 30% and high concentrations.

Below I will mostly dwell in the left hand side (s-wave BCS side) of the above
phase diagram.

The BCS prediction is

v, 2.1 wh
T, = L(2) i Tpexp{— 3.8
1) Trexp{-5 ) (3.5)
or, numerically (at SVP)
1.8

T,[K] = 0.7123 exp(———) (3.9)

|a|z?

with a in A. The exact value of effective mass (i.e. Tr) is not that important (the
uncertainty of several percent in the coefficient 0.71 is not very crucial), but, since the
exponent 1.8/z3 |a| is rather larger, the whole equation (3.9) becomes very sensitive to
even tiniest changes in a. Here it is even important what is z: N3 /N, or N3/ (N3+ Ny)!

Let us illustrate it on the basis of available information on a (see the table).
Of course, one should expect that the values of a obtained from different types of
experiments in different conditions by different groups should slightly differ from each
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other. But, as one can see, a reasonable discrepancy in the values of a, taken for their
face values, leads to an enormous spread in T..

Source of information | —a, A | T, mK z = 0.03)
Thermal conductivity 1967 | 0.83 0.06
Spin diffusion 1966 | 0.54 0.0015
1981 | 0.52 0.001
Viscosity 1972 | 0.75 0.03
Spin echo 1984 | 0.5-0.7 | 0.0006-0.02
1990 {1 0.2

Is it hopeless to try to observe the transition? I cannot answer this question
without more reliable and precise experimental data on a. But [ want to remind that

the data obtained at very low concentrations are not very accurale (experiments
are too difficult), and the data obtained at higher concentrations are not very reliable
(the accuracy of interpretation is about m%).

In general, the thermodynamics of the BCS-type s-wave transition for *He-*He
mixtures is the same as in the text- book BCS theory: the standard jump in heat
capacity, decrease in magnetic susceptibility, etc. Actually, the *He subsystem in
9He-*Ie mixtures should be closer to the BCS model than any metal. Note, that one
can observe the transition only when/if T, > /7™ where 7% is essentially T7.

3.2 Three-velocity hydrodynamics

Below the transition the system has two different condensates, *He and *He. There-
fore one should introduce 2 superfluid velocities (proportional to the gradients of the
condensate wave functions) v, v4, and a normal velocity v,

1 = 1 =
V3 = _V(]Sg 5 Vg = —V¢4 (310)

" Img My
The critical velocity for ®He
Vge ™ Tc/pF << VpyUyqe

Since the change §e(p) in ®*He energy in moving *He is (Galileo principle)

g

8e(p) = (1 = 7 F)pva, (3.11)

the superfluid motion of “He plays the same role for 3He as a vector potential of
magnetic field A for electrons in metal,

Mg [
- - 12
(1 M)v4¢> CA (3.12)
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The mass conservation laws (continuity equations) for *He and *He have the standard
form analogous to pure *He:

;53 -+ diV(ngﬂ -+ p3) =0 (3.13)
pa + div(psvn+ps) =0

where, of course, the momenta of components are proportional to velocities, vi — v,,:

ps = P:(a?s)("s -V, + Pg;)(vri — V) (3.14)

Ps = pg(v3 - Vn)+ PSZ)(V4 — Vn),

with proportionality coefficients forming a 4-component matrix of superfluid densities.
The elements of this matrix are

PR = (mi/M)N,, (3.15)
oSl = ol = (M/ma — 1)
Pl = pa— (M —mg)Ny + (1 —my/ M)PMN,,
P8 = ma(N;— N,),
i) = (M —mg)(Ns — N,),
p™ = M(N:—N),
where N, is the number of "superfluid” *He particles; N, is determined by BCS

formulae
In principle, the energy of *He quasi-particles depends on the superfluid velocities:

m m
Se = If’—pv3 + (1 - ﬁ?)pv,l (3.16)
Therefore, the quantity

Q = 2m3V3 + 2(M — mg)V4 — QMV.” (3.17)

plays the role of the momentum of >He Cooper pairs.
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The transition temperature T strongly depends on Q:
T(Q) ;
T_ (o)

C

— @
Qua
where the maximum value of Q, @,, is
AT =
0, = %91 exp(l — C), (3.18)
F

C' being the Euler constant. This effect might be observed in the experimental set-up

like

PUre

Pure 3He - VHQ e

|+

MMV WARTTY

A | |
\ .Sup.er’eak —/

3.3 Collective modes

In a system with two condensates the number of collective (Goldstone) modes is quite
large. The temperature dependence of different sound velocities is presented in the

figure.
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The transition temperature T, strongly depends on §):

where the maximum value of @, ¢, is
T(Q =
0, = %O)exp(l o), (3.18)
F

(' being the Euler constant. This effect might be observed in the experimental set-up

like

3.3 Collective modes

In a system with two condensates the number of collective (Goldstone) modes is quite
large. The temperature dependence of different sound velocities is presented in the

figure.
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The standard classification of the modes is the following:

¢ ¢;. First sound. Oscillations close to usual acoustic waves in pure He II. An
interesting detail: at very low temperatures, wr >> 1, this mode is actually
the so- called HF first sound, and not a hydrodynamic one. This mode is not
very sensitive neither to the presence of *He, nor to the superfiuid transition.

e ¢z. Second sound. Oscillations similar to usual density {acoustic) oscillations in
a gas of *He quasi-particles (or, at higher temperatures, in a gas of phornons).
The mode disappears at I. The mode is not very sensitive to 7..

e cy. Temperature waves in superfluid *He. The velocity is exponentially small
in *He concentration,

, TS* N,

= MN.N. (3.19)

where S is the entropy, C - heat capacity.

¢ cyy. The fourth sound in superfluid 3He.

>

7

Temperature dependence of propagation velocities tfor all hydrodynamic modes (wr« 1} in
solutions {schematic).

3.4 Vortices

In systems with two superfluid velocities, the quantization rules on each linear vortex
should be fulfilled separately for both v5 and vy:

i3 h
Vg == e e
2m3r
Ty h
y=—
mar

27



The standard classification of the modes is the following:

¢ ¢;. First sound. Oscillations close to usual acoustic waves in pure He II. An
interesting detail: at very low temperatures, wr >> 1, this mode is actually
the so- called HF first sound, and not a hydrodynamic one. This mode is not
very sensitive neither to the presence of °He, nor to the superfluid transition.

¢ ¢;. Second sound. Oscillations similar to usual density (acoustic) oscillations in
a gas of *He quasi-particles (or, at higher temperatures, in a gas of phonons).
The mode disappears at 1. The mode is not very sensitive to 7.

o cp. Temperature waves in superfluid 3He. The velocity is exponentially small
in ®He concentration,

TS* N,
2 _ 8
“TT7C MNsN, (3.19)
where S is the entropy, C' - heat capacity.

o cy,. The fourth sound in superfluid 3He.

3.4 Vortices

In systems with two superfluid velocities, the quantization rules on each linear vortex
should be fulfilled separately for both vs and vg4:

Mg TL
Vg = -
2ms T
Tl-qﬁ
Vg = =
myr
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where ng and n4 ("charges”) should be integer. This means, that near the vortex the
momentum of the Cooper pairs is non-zero
h 2 M
Q=- 3 (3.20)
r

LLLTE RS
On the other hand, the energy of the system is the monotonic function of @Q:

3
T

Therefore, the energy becomes the function of M, ns, ny:

E = E(M, T3, n4)
The equilibrium vortices should have the charges ns corresponding to the minimum

of the energy (3.21). As a result, the charges ns become

the functions of ny and 3He effective mass, M.
Let us consider the most common case ny = 1. Then the energies E(Q) with

different values of ng will have the following dependences £, (M):

(3.21)

|

]
Ne=l ' nzo0'ni=-l 'N,z-2, N=-3 )
, , T T

! t ) )

)
S Y 'y N I} [} L] [} ) [ ] %
Of course, only solid parts of the curves correspond to stable states. To observe
transition from one curve to another, one should either measure the dependence of
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where ng and ng ("charges”) should be integer. This means, that near the vortex the
momentum of the Cooper pairs is non-zero

Q= g ng + 22821y, (3.20)

On the other hand, the energy of the system is the monotonic function of Q);

Therefore, the energy becomes the function of M, ns, ny:
B = E(M, Tta, n4) (321)

The equilibrium vortices should have the charges ng corresponding to the minimum
of the energy (3.21). As a result, the charges n3 become

the functions of ny and >He effective mass, M.

Let us consider the most common case ny = 1. Then the energies E((}) with
different values of ns will have the following dependences E, (M):

Of course, only solid parts of the curves correspond to stable states. To observe
transition from one curve to another, one should either measure the dependence of
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charges ng of stable vortices (vortices with the lowest energies) on M, or to follow
the changes in the vortex lattice.

At SVP the value of M/mg3 is very close to 7/3 (1.5) meaning that the most
stable vortices are the ones with ny = 1, nz = —2, and that we are extremely close
to the minimum on the above curve E(M). Strangely enough, the (very uncertain)
experimental data show that at P = 10 atm. we are very close to another special
point, M/m3 = 8/3, i.e. close to the maximum of the curve. At even higher pressure,
p = 20 atm, we are very close to the next minimum M/ms ~ 2.9, meaning that
between 0 and 20 atm one should observe at least one phase transition in the vortex
gystem, from nz = —2 to nzg = —3.

This transition can be observed either as a phase transition for a single vortex
line, or as a phase transition (restructuring) for the vortex lattice.

3.5 ‘Spin polarization vs. superfluidity

The usual Cooper pairs are formed from the particles from the Fermi surface with
opposite spins and opposite bul equal momenta.

If we start to polarize the spin system making Ny larger than N|, the Fermi mo-
menta for up and down spins, p; = k(672N;)T and p; = h(672N|)7, become different.
Therefore, for the particles it becomes more and more difficult with growing polar-
ization to find a proper counterpart with an opposite spin and equal momentum to
couple into the Cooper pair. However, finite temperatures provide sufficient uncer-
tainty near the Fermi spheres to ensure the proper pairing if the difference in Fermi
momenta for up and down spins is still small

nop o 1 (3.22)
PF Tr
If, however, the polarization is high enough to violate the inequality (3.20), the
formation of Cooper pairs with zero momenta becomes absolutely impossible, and
the only possible outcome is the formation of Cooper pairs with non-zero momentum
Q.

This all means that the transition temperature becomes smaller with increasing
polarization (see the figure). Eventually, when the kinetic energy of the condensate
associated with pair momenta @@ will become comparable with the energy gap, A,
the s-wave pairing will become completely impossible.

At very small polarizations, when @ is still zero, the major difference with a
normal BCS phase will be some coupling of temperature waves with longitudinal
spin oscillations since the equations in entropy and the magnetic moment M, become
coupled via v,:

S + Sdivv,=0 (3.23)
My, + M,divv,=0

The change in the transition temperature with polarization/magnetic field is given
in the figure. The figure also shows the part of phase diagram where () # 0.
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3.6 Superfluid liquid crystals

When @ # 0, the superfluid phase becomes spatially inhomogeneous meaning that
the order parameter (energy gap) A obtains a spatial structure

A(r) = YA, e/t (3.24)

As a result, a superfluid mixture obtains some pseudo-crystalline structure. Near the
transition point all the vectors Q,, in eq.(3.22) have the same value

1@l = Q(T) (3.25)

where Q(T') is given in a figure. The expansion (3.24) involves higher and higher
harmonics of @ (3.27) at lower temperatures.

The exact structure of the equilibrium phase (3.24) is still unknown. The most
widely studied phases are

e The so-called Fulde-Ferrell phase
A = Age’W/E (3.26)

The transition into this phase is of the 2-d order. One of the major peculiarities
of this phase is the equivalence of phase transformations

A — Ae*®
to translations
r—-r+u

which results in dynamical properties very different from other phases.

» The layered (2D) phase
A = Agcos(Qr/h) (3.27)

The phase transitions may be of the second and of the first order depending on
polarization. The phase shifts are not equivalent to translations.

e The cubic phase

A = A {cos Qz/1 + cos Qy/h + cos Q,/R} (3.28)

The phase transition is of the first order.
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in principle, such inhomogeneous superfluid phases might also be observed in case
of superconductors. But in superconductors the magnetic field does not penetrate
into the bulk (making it difficult to polarize the spin system), and unconventional
pairs do not survive collisions with any impurities (making it impossible to polarize
spins by introducing paramagnetic impurities into superconductor).

Above I have mentioned the order of the phase transition in the mean field ap-
proximation. One can also make an exact statement that

Due to fluctuations, the transition into the inhomogeneous phase is always of the
first order.

The reason is quite simple. Since the transition occurs at finite momentum, Q,
the phase space for fluctuations becomes quite large,

Bk ~ Qk

making the system look effectively like a one-dimensional one.
I will not go into details though some of them are very non- trivial and rather
fascinating. I would only like to mention that in equilibrium

e the density of the system is constant and does not follow variations in A(r)
(3.24).

¢ there is no current in equilibrium despite the inhomogeneities

» the density of magnetic moment is inhomogeneous and has the form of a spin
density wave:

[Am|®

M, = M,, {1 + ; T cos(2er/h)} (3.29)

¢ the orientation of the system (of vectors Q,,) is determined mainly by the walls,
or, in very large systems, by dipole-dipole interaction and superfluid current.

The collective modes in phases (3.22) are also very different from those in homo-
geneous systems, Now the superfluid transition for *He gives rise not only for one
additional hydrodynamic variable

I

:2—?‘?13‘

VQs (3.30)

V3

but also for another one, namely, to displacements
r—r+u, A(r+u)#A(r) (3.31)

Therefore, in such a system one can observe in addition to spin- temperature modes
(3.19), (3.23) (which, in turn, become highly anisotropic),

a new Goldstone mode — shear elastic waves, which are very unusual for liquids.
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4 Spin-polarized *Het-*He liquid and gaseous mix-
tures; SHel gas

4.1 Thermo- and hydrodynamics

Now I would like to discuss the influence of spin polarization on the properties of *He-
*Ie mixtures (and *He gas). The choice of words "effects of spin polarization on ...”
is deliberate, and is made not only because it sounds better than simple "magnetic
properties”. The underlying reason is that the spin polarization (spin alignment) is
not necessarily related directly to an external (or internal) magnetic field:

The depolarization times (the time of longitudinal spin relazation Ty) for helium
systems may be very long providing the possibilily of study of practically stationary
non- equiltbrium spin-polarized states with a degree of spin- polarization which is de-
termined by a prehistory of a system rather than by o current intensity of an effective
magnetic field.

Therefore, in many cases, the proper thermodynamic variable is a magnetic mo-
ment (or a degree of spin polarization), and not a magnetic field.

This also means that one has to be able to estimate characteristic times for differ-
ent depolarization times, and to come up with reasonable suggestions for achieving
high degrees of spin polarization.

The major part of *He magnetic interactions is of exchange origin and conserves
the total magnetization. Two spin non- conserving processes are the very weak
magnetic dipole-dipole interaction and magnetic relaxation on the walls, The wall
processes are limited by the diffusion time L?/D (I is the size of a sample, D is
the spin diffusion coefficient), and the direct magnetic interaction with the wall
While the spin diffusion will be discussed later in detail, any general discussion of
wall processes seems to be impossible: such processes depend on the material and
structure of the wall, and on the possible presence of localized *He states near the
wall. However, it is known that in many cases it is possible to suppress considerably
the wall depolarization by coating the wall by some non-magnetic substance — most
often, by molecular hydrogen and *He.

On the other hand, the dipole relaxation is a bulk property, and can be understood
both experimentally and theoretically. In dilute systems like *He gas and *He-*He
mixture, a good estimate of the corresponding relaxation time 7 is given by the
expression

2r8
A (P_)Q 1
Bt A7 NavA?

Ty ~ (4.1)

which describes the probability of a spin-flip process under the action of magnetic
dipole forces during the collision of two 3He particles. Here the role of the size of a
particle is played by its de Broglie wavelength, A.

At low temperatures,

T,Tr < Ey ~ hfma®
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one should substitute A ~ f/muv in eq. (4.1):

Bt 108 1

T B Naom? T Tz (T[K))E

T3 [s] (4.2)

where in the Boltzmann region 7' >> Tp the velocity v ~ (T'/ m)%.
In the degenerate region, T << Tr, one should not only substitute the Fermi
velocity,

% . ‘

vF = M(?ﬂr?f\g)é, (4.3)
into (4.2) instead of v, but also add an additional factor (T#/T)? reflecting usual
non-effectiveness of collisions in the degenerate regime

Bt Tpy, 108 10s

- m(?)ﬂ ~ F TED T[K] << 3 (4.4)

T

Note, that vp NS%, Tr o NS%, and, as a result, T} does not depend on 3He density
N3,

However, in case of strongly non-equilibrium polarization, when the degree of
polarization is high and is much larger than its thermodynamic value determined by
an external magnetic field, the phase-space arguments leading to a restricting factor
(Tp/T)? are not valid any more. In this case the energy/momentum state of a flipped
spin is practically not restricted, the factor (T/T)? disappears, and the relaxation
time,

Rt 10°

B~ Nt ™ ";""25"[3]

(4.5)

contains again an explicit density dependence.
At relatively high temperatures, T' >> FEy, one should substitute into eq.(4.1) an
atomic size a instead of A:

hia2

Ty ~ 5N,

(/M) (4.6)

The numerical estimates easily show that in many important cases the dipole
time (4.1)-(4.5) is very long indeed, and that with a proper coating of walls one may
expect to observe and study different overpolarized non-equilibrium states.

There are several ways how to polarize helium systems. The most straightforward
method of those listed below is

e The so-called brute force technique: polarization by an external field. The
degree of polarization o ~ 28H/E may be noticeable in realistic fields H <
100 Oe only if a characteristic magnetic energy E is of the order of or less than
10 mK (the magnetic moment of a *He atom (8 ~ 0.08 mK/kOe). Therefore,
this method is good only for solid *He (the Néel temperature £, ~ 1 mK) and
dilute *He-*He mixtures with Tr < 10 mK at low temperatures 7' < 10 mK.
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The polarization of liquid *He and He-*He mixtures by the rapid melting of
solid *Het polarized by the brute force at low temperatures. Here the prob-
lems are associated with large heating during melting and with not very long
relaxation time T for liquid *He (77 < 10 min).

The optical pumping for 3He gas at room temperatures with consequent cooling.
Ng ~ 10 cm™3, a > 80%, 71 > 3 days, T < 1 K. The same group has managed
to condensate this polarized *He? gas into liquid.

HF methods based on magnetic coupling of ®He particles to the walls. This
methods provide some enhancement in *He polarization over its equilibrium
value, but are not very effective yet.

The enhancement of *Ile concentration/polarization by taking away *He through
a superleak (or by crystallization) out of *He-*He liquid mixture. These meth-
ods have not been tried yet.

Basically, these are two sources of polarization dependencies for physical charac-
teristics of SHel- * He mixtures:

Changes in characteristic kinetic energies/momenta/velocities of particles. This
effect is much more noticeable for degenerate mixtures when the Fermi momenta
follow the changes in (relative) densities of up and down spins, Ny

i
pr(y = B(67*Ny(y))? | (4.7)
In Boltzmann T' >> Ty = p"T’(l)/Zm’;(“ case, this effect is not very notice-

able since the characteristic kinetic energies for up and down spins are mostly
determined by the temperature and are not very sensitive to polarization.

Changes in effective interaction. Formally, neither the single particle spectrum
(1.23),

P’ p?
— A+ PR gam .
()= -8+ L1452 - g, (08)
nor the two-particle interaction forces and scattering amplitude (1.24), (1.25)
fo=—a (4.9)

fp=bocos¢ (4.10)

do not depend on polarization. But the effective interaction is sensitive not only
to interaction forces, but also to a distribution of particles between spin-up and
spin-down components:
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The s-wave scattering of spz'n—% fermions is effective (because of the Pauli prin-
ciple) only for scattering of particles with different spins. Therefore, the po-
larization of the spin system (spin alignment) leads to o decrease in effective
contribution of the s-wave scattering, and consequently to an increase of the
role of the p-wave channel. Overall, the effective interaction falls drastically
with polarization due to a suppression of the main (s-wave) interaction chan-
nel.

Since the s-wave scattering amplitude (4.8) does not depend on momenta, the
first (main) term in the Fermi liquid function (2.9)

. o2rah?

Foge(p, P) = (1 = 65) (4.11)

remains the same, while the second one changes considerably (it contains certain
integrals over distribution function). What is more, the spin structure of the F-
function F,,+ changes with polarization. It contains now not only terms with products
33" as q.(2.9) but the terms of the type

Fopr = Fy 4+ 33" + Fy(m(@ + 6') + Fy(m&)(mé”’) (4.12)

where m is the unit vector in the direction of magnetization. Of course, the terms
Iy and Fy are small (in pp/h ~ :c%) in comparison with (4.10).

As I mentioned above, when the polarization is very high, the s-wave interaction is
effectively suppressed, and the interaction originates mainly from the p-wave processes
with the amplitude (4.9), and the corresponding Landau F-function is

247b ¢
F = —ﬂ-p%sin2 — X T

M 2

oy

(4.13)

Therefore, the experiments at very high polarizations open the way to experimental
determination of the constant b in the p-wave scattering amplitude (1.25), (4.9).

Most of the thermodynamic characteristic of *He?- *He mixtures are not very
sensitive to *He polarization because of the dominant role of background contribution
of “He. There are few exceptions for which this background term does not mask the
effects of polarization. I will discuss four of such effects.

1. Osmotic pressure. The osmotic pressure — the pressure in the gas of *He
quasi-particles — is proportional to the kinetic energy of the particles. Since
in degenerate gas the kinetic energies strongly depend on polarization (4.6),
the osmotic pressure changes considerably with polarization (sece the figure).
On the other hand, in the Boltzmann region the kinetic energies are affected by
polarization only through small interaction correction, and polarization changes
in osmotic pressure are very insignificant in comparison with a degenerate case.

For exactly the same reason, the polarization effects are much more pronounced
in degenerate case for
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2. Second sound velocity. The second sound velocity — the sound velocity in
a gas of *He quasi-particles — is determined by characteristic velocities of *He
quasi- particles. Since these velocities change considerably in degenerate case
(4.6}, the second sound velocity s; strongly depends on polarization.

The second sound velocity in polarized mixtures depends not only on polariza-
tion but also on frequency. One should separate between the high-frequency
regime, w7y >> 1 (74 is the dipole relaxation time), when the local densities of
spins up and spin down, Ny()), do not change during the period of oscillations,
and the low-frequency ("hydrodynamic”) regime, wry << 1 when the particles
are able to redistribute themselves between spin components adjusting Ny()) to
the local (oscillating) values of thermodynamic variables. The velocity of the
hydrodynamic second sound, Séo) (curve 2 in the figure) is smaller than the
velocity S5° of the HF second sound {curve 1).

3. The third major effect is associated with all sorts of polarization changes in
SHet-*He phase diagram. Again, these effects are much more pronounced at low
temperatures when the *He chemical potentials j1()y are equal to corresponding
Fermi energies and, therefore, strongly depend on degree of polarization, (4.6).

Here I will discuss only the polarization change in the limiting solubility of *HeT
in *He when the mixture is in equilibrium with pure liquid *Hef.

The conditions of phase equilibrium correspond to equality of chemical poten-
tials for up and down spins in a pure and dilute phases (cf. eq.(2.1)):

“%34) — ”ga},#i:%:l) _ ”5,3) (4_14)

According to €q.(2.3), eq.(4.13) can be written at T =0 as

X P 2

A+ Qm?(GﬂstT)”:gmgT(ﬁszsm)g (4.15)
% P 2

A+ QmI(GﬁNBl)izzm;l(sarr?Nsm)’

which coincide with (2.3) when Na; = N3 = N3/2. To solve eqs.(4.14), one
should know

o The total numbers of *He and *He particles in the system.

¢ The total magnetic moment (the total degree of polarization).

o The dependencies of effective masses of *He quasi-particles in the pure

phase, m31(1)» and in the mixture mi( )y on polarization and concentration.

As a result, one will get the degrees of polarizations — which are different in
both phases, the polarization of dilute phase being considerably higher — and the
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limiting *He concentration as a function of the total polarization and the ratio
of numbers of *He and *He particles in the system.

To illustrate the magnitude of the effect, we will consider only the limiting case
when

o the total number of *He particles is much smaller that the amount of *He,
i.e. that the change in *He concentration in a droplet of *Hel-*He does not
change the density and polarization of the *He? bath,

e the effective mass of *He quasi-particles in the mixture is not very sensitive
neither to *He concentration, nor polarization,

mi=m]=M (4.16)
In this case, the numbers Naopy) of spin-up and spin-down particles in the

pure phase will be given by the total density of *He, N, and the degree of
polarization, «

1
Naot(y = 5N (1 £ @), (4.17)

and egs. (4.15) take the form

(X

Neo - v | M 1+ a)t IMA’

(4.18)

as far as the bracket is positive (otherwise, N3; = 0). The resulting change in
limiting *He concentration is

To

o _ [(/my)(1+ @)} + (M/m3)(1 — 0)f — 2MA/(357)3 ] wis)
2M [m3) — 2M A’/ (372)3 '

A very rough estimate shows that the limiting concentration increases by about
a factor 3 or 4 at complete polarization.

[ want to repeat again that this result will change considerably if the amount
of *He in the system would be comparable to or larger than the amount of *He.

In case of phase equilibrium between solid ‘He and liquid *He{-*He mixture,
the polarization leads to noticeable changes in both limiting concentration and
pressures.

. The last thermodynamic effect I want to mention is a rather peculiar tempera-
ture range at high polarizations in which the spin-up component of the mixture
is degenerate,
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2

h
T << TT: .

; (67T2NT) 3 ’

while the spin-down component is so dilute, N; << N, that it becomes ”clas-
sical” and obtains the Boltzmann distribution function if

2

Tl = (ﬁ’ﬂ'le)% << T

QmI

The properties of such a semi-degenerate system are different from both degen-
erate and Boltzmann solutions.

4.2 Transport and magnetokinetic effects

The most striking effects in transport are associated with already mentioned above ef-
fective suppression of s-wave interaction with polarization. This leads to an enormous
growth of particles’ mean free paths and transport coeflicient.

The origin of the effect is quite simple. In case of s-wave scattering, the mean
free path for spin-ups is restricted only by their collisions with spin-downs:

1 1
Nio  Nja?

[~ (4.20)

and increases practically without limit when the number of spin- downs goes to zero,

N| — 0. Then ¢; is limited only by p-wave processes with much smaller cross-sections.
One can easily estimate the effective growth of mean free paths by comparing the

cross-sections of s- and p-wave scatterings with amplitudes (1.24), (1.25)

glwﬁwa_g,\,(i)*lm e 3>>1 , T<<Ty (1.21)
b o, bp* ‘pa %9)2 >>1 , T>>Tf '

The enormous growth of mean free paths (4.20) is responsible for a corresponding
growth of transport coefficients such as viscosity, 5, and thermal conductivity, . The
plots of relative growths of 5 (curve 1) and « (curve 2) with polarization are shown
in the figure for degenerate, T' << T, case.

This effect is one of very striking macroscopic manifestations of the Pauli principle.
Note, that this effect takes place irrespective of quantum degeneracy of the system,
in both, "classical” Boltzmann and degenerate regimes, For the sake of comparison 1
have plotted in the next figure relative growths of viscosities /7(0) with polarization
for degenerate {curve 1) and Boltzmann (curve 2) cases. Since these two curves are so
close to each other, an estimate of change in viscosity in the intermediate temperature
range is quite simple.
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Of course, an analogous effect should be observed also for a sound attenuation.
However, the situation with the sound attenuation is even more interesting. Experi-
ments on different frequencies may reveal a difference in relaxation times 7(}) for up
and down spins. Schematically, the situation is presented in the figure:

I

2€ER0o PoLARI2ATION NOoN-2ERD POLARIZATION

ATl €E mvuaTION
ATTEN UATIOR

t —3
' w

e 0 "Ef
at finite polarization one should observe a split of an attenuation peak at w = 1/7
(or at least a little bump) into two peaks one of which (w = 1/7;) will increase in
amplitude with polarization and shift towards lower and lower frequencies, while the
other will stay at the same position but with decreasing amplitude.

The behaviour of spin diffusion coefficient is quite different from other transport
coeflicients. But before discussing diffusion, T would like to make a general comment
concerning the transport phenomena in polarized systems.

If one does not change a direction of magnetization, then our system of spin—%
particles behaves exactly like a two-component mixture — a mixture of spin-up and
spin-down components. Generally speaking, such an analogy between a spin-polarized
system and a multicomponent mizture is exact if the interaction between particles is
of exchange origin.

Therefore, thermodynamic and (longitudinal) transport phenomena in spin-polarized
(dilute) Het systems can be described by the same expressions as corresponding phe-
nomena in binary mixtures, while the degree of spin polarization

a = (Ny— N)/(Ny + N, (4.22)

plays the same role as the concentration of dissolved component in mixtures. If the
interaction is an exchange one, then the total number of particles in each of the
components does not change. Weak dipole processes with characteristic time 74 for
polarized systems are analogous to slow chemical reactions in case of binary mixtures.

In case of degenerate polarized systems, this analogy does not help much to calcu-
late transport coefficients since the theory of mixtures of degenerate (Fermi) systems
virtually does not exist. It is not so in case of Boltzmann systems where we can
benefit from the relatively very well developed transport theory for multicomponent
mixtures.
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Of course, an analogous effect should be observed also for a sound attenuation.
However, the situation with the sound attenuation is even more interesting. Experi-
ments on different frequencies may reveal a difference in relaxation times () for up
and down spins. Schematically, the situation is presented in the figure:

at finite polarization one should observe a split of an attenuation peak at w = 1/r
(or at least a little bump) into two peaks one of which (w = 1/7;) will increase in
amplitude with polarization and shift towards lower and lower frequencies, while the
other will stay at the same position but with decreasing amplitude.

The behaviour of spin diffusion coeflicient is quite different from other transport
coefficients. But before discussing diffusion, I would like to make a general comment
concerning the transport phenomena in polarized systems.

If one does not change a direction of magnetization, then our system of spin—%
particles behaves exactly like a two-component mixture ~ a mixture of spin-up and
spin-down components. Generally speaking, such an analogy between a spin-polarized
system and a multicomponent mizture is ezact if the interaction between particles is
of exchange origin.

Therefore, thermodynamic and (longitudinal) transport phenomena in spin-polarized

(dilute) 3HeT systems can be described by the same expressions as corresponding phe-
nomena in binary mixtures, while the degree of spin polarization

a = (Ny = N)/(Ny + Ny) (4.22)

plays the same role as the concentration of dissolved component in mixtures. If the
interaction is an exchange one, then the total number of particles in each of the
components does not change. Weak dipole processes with characteristic time 74 for
polarized systems are analogous to slow chemical reactions in case of binary mixtures.

In case of degenerate polarized systems, this analogy does not help much to calcu-
late transport coeflicients since the theory of mixtures of degenerate (Fermi) systems
virtually does not exist. It is not so in case of Boltzmann systems where we can
benefit from the relatively very well developed transport theory for multicomponent
mixtures.
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Having said this, it would be quite natural to write the spin diffusion equation
for polarized *Hel (mixtures) in the form standard for diffusion in binary mixtures.
The (spin) diffusion current should contain the terms proportional to gradients of
”concentration” (in our case — polarization), temperature and pressure (for *He-
He II mixtures — osmotic pressure)

Kost ’csp

J3 = —-‘DN‘?,(VO.’*F ?VT{- P

VP) (4.23)

where one could call Dky/T and Dk,,/P the (spin-thermal diffusion and (spin)
pressure diffusion coeflicients.

The (longitudinal) spin diffusion coefficient I in (4.22), unlike viscosity and ther-
mal conductivity, does not increase with polarization. On the contrary, in case of
degenerate systems D goes to zero when the polarization a — 1 reflecting the fact
that at complete polarization not only the density of spin-down particles N| — 0, but

their velocity, v} x N l%’ goes to zero too (the condition of spin diffusion corresponds
to the lack of total mass current meaning the exact balance between opposite currents
of spin-ups and spin-downs). In the Boltzmann, T' >> T, case D) practically does
not depend on polarization reflecting the well-known fact of independence of diffusion
coeflicient in a mixture of ideal gases of the mixture concentrations.

I do not have enough time to discuss here the properties of spin thermal diffusion
and pressure diffusion ratios, &4 and &,,; I would only like to mention that the theory
of spin pressure diffusion is very interesting and not at all trivial even in simplest cases.

4.3 Spin dynamics and spin waves

Let us go back and write in more detail accurate macroscopic ("hydrodynamic”)
equations of spin dynamics.
In exchange systems spin is conserved,

oM 0
3 + BEJ,‘ =, (4.24)

while the spin current J; ( J; is a vector in both, spin and usual spaces) should be
proportional to the spatial gradients of thermodynamic variables:

J¢ = M®v; + AGV.T + AZV,P + D*V;M? (4.25)

Since there is only one preferred direction in the spin space, namely the direction of
magnetization,

m=M/M, (4.26)
the most general form of coefficients in eq.(4.24) is

Ar =mAr, A, =mA, (4.27)

D*® = D\ é,p + Dymama + Daenpym,y (4.28)
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Then, if one slightly changes notations,

AT = _ﬂNSDK'st/TJ Ap = “ﬁNSF‘:sp/P) (429)
D1+D2:D,D3/D1 :QT_g_,Di(].-{'Dg/D%)EDJ_, (4.30)
28H = hd, (4.31)

the equations of spin dynamics (4.23), (4.24) take the form of the following equation
in the vector of spin polarization & = M/ Nj:

Na(& + v, V&) + Qofm x &|— (4.32)
V. [% (Ve + e [m X V,d]
+(D% (1+0272) —1) m(mvn&')) -
~DNym(2V, T+ ’i;”vp)] =0

Though eq.(4.31) looks rather cumbersome, in reality it is quite simple. Its longitu-
dinal component (component along m) is exactly eq.(4.22) and does not interest us
here any more. The transverse component of eq.{4.31) (component perpendicular to
magnetization m) can be rewritten as a following equation in the circular component
M, of magnetization M, M, = M, + 1M,

3 , Dy | —
8tM+ + EQUM+ - 1 n szr_,z_ (1 + ZQ«T_]_)V M+ =0 (4:.33)

Equation (4.32) describes the inhomogeneous rotation of magnetization (spin
waves) and is somewhat analogous to the well known Leggett(-Rice) equation of
spin dynamics in Leggett’s notation 27 — pM. However, we still have several not
very clear points:

¢ What is 27
o Are the spin diffusion coefficients I} and D equal or not?
o What is 7,7

o What is the value of Q7 7

Before answering these questions, let us write the solution of eq.(4.32) in case of
plane waves,

My = Migexp(—iwwt +ivr),
i.e. the spectrum of spin waves:
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D, 1

=)
“ G+Q'ril-|—1/927i

(1—3/Qr)? (4.34)

Now back to the above questions:

1.

2 is the frequency of spin oscillations in the molecular field. In dilute low-
temperature systems in the main approximation

drak
M

O~ ———(N; — N|) (4.35)

The relaxation time approximation for collision spin current (ﬁ(ﬁ) is the colli-
sion operator) should contain two different relaxation times, 7, and 7 for the
system with preferred direction:

Tr, [ drodh(n) = —J; - (% - ;lw—)m(mJ,-) (4.36)
1 L

The transverse and longitudinal spin diffusion coefficients, D, and D, are pro-
portional to the corresponding relaxation times, 7; and 7:

D =1N; [Ny < v > 4N <v72 >] (4.37)
T Ny < v? >p =N < v? >
Dy == 4.38
T3 Ny — N, (4:38)
where < -+ >y()y is the average of the corresponding velocity over the distri-

bution function for spin- ups {downs).

It happens, that in Boltzmann region r = 7, , D &~ D, . However, in degenerate
case 7 > 7,, while at high polarizations D, > D. What is very important,
is that at low temperatures and high polarizations 7', unlike 77!, contains a
contribution without a small factor (T/Tr)2.

Q1) is the quality factor of the spin waves and characterizes the attenuation.
At low temperatures/concentrations,

A

Qr) ~ a—,
a

and the spin waves experience a very small attenuation as soon as the de Broglie
wavelength of particles A exceeds a.

The figure compares two sets of recent experimental data on D, /Q7, with
calculations in the simplest s-wave approximation.
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5 Dense 3He? liquid systems

5.1 Methods of polarizations

Different methods of polarization for pure liquid *Hel and concentrated *Hef-*He
liquid mixtures have already been described above in chapter 4.1. I will only list
them again:

e Brute force technique.
Advantages: Thermodynamically equilibrium polarized state at ultra-low tem-
peratures.
Disadvantages: Very low degree of spin polarization.

¢ Melting of polarized solid *Hef.
Advantages: High degree of polarization.
Disadvantages: Finite (often not very long) lifetime; strong heating; non-
stationary and non-equilibrium conditions; not very clear dynamic of melting;

high field (difficulties for NMR).

e Condensation of polarized gas *Hef.
Advantages: Relatively long lifetime; high degree of polarization; low field (sim-
ple NMR measurements).
Disadvantages: Non-stationary and non-equilibrium state; small amount of *He;
semi-2D character of the system (thick film).

¢ HF methods.
Advantages: Stable degree of polarization; technically not overcomplicated
method.
Disadvantages: Low polarizations; unclear (but important) coupling to the sub-
strate; possible heating.

s use of superleaks to take away ‘He.

5.2 Spin-polarized Fermi liquids

Dense pure liquid 3Hel and concentrated 3Hel-*He liquid mixtures are two *He?
Fermi liquids with different parameters.

It is impossible to calculate accurately the parameters of these systems micro-
scopically starting from the first principles. The difficulties are related not to the
polarization of the spin system, but with the lack of non-model theories for dense
systems. What is even worse, it is very often impossible to prove unambiguously the
correctness of practically any model and to estimate the degree of its accuracy. The
reason is quite simple: helium systems have no intrinsic small parameters, nearly all
dimensionless combinations of physical characteristics are of the order of 1, and there-
fore, the model predictions reflecting correctly different features of helium systems,
do not have parameterical accuracy.

I will illustrate this on the example of, say, viscosity. Obviously, the changes in
viscosity at small polarizations are quadratic in polarization ¢,
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n()/9(0) = yo’ (5.1)

Different models for *He (glass-type, localized, metamagnetic, spin-fluctuations, etc.)
predict reasonable — of the order of 1 — values of 4. Therefore, since the accuracy of
these models is unknown and all of them are basically reasonable emphasizing differ-
ent features of 3He, it would not be very wise to segregate between them choosing as
the "best” one the one which "predicts” the value of v (5.1) closer to the (current)
experimental value 2 + 4 than the other ones. Such a segregation would be possi-
ble only if predictions and experiment would differ by orders of magnitude or have
distinctively different singularities. By the same token, it would be in same sense a
waste of time to try to modify some model description in order to have better and
better quantitative agreement with (current) experimental data. Such a modification
is practically always possible. It never proves anything, but just makes an underlying
model less general and attractive, and more vulnerable to criticism.

Below I will base the brief discussion of polarization characteristics of *HeT Fermi
liquids on the comparison with the features of dilute *Hef systems discussed in pre-
vious four sections.

Some of the common features of dense and dilute 3He? systems are due to the
exchange origin of *He interaction. Therefore,

e In dense °Hef, like the dilute phases, longitudinal and transverse phenomena
are separate from each other.

¢ In describing the longitudinal effects (thermodynamics and transport), one may
use an analogy with a multicomponent (binary) Fermi liquid.

¢ All thermodynamic characteristics can be expressed via harmonics of the Fermi
liquid function using the standard rules. The spin structure of the Fermi liquid
function is the same as (4.11):

Foe(p,p') = Fi(p,p') + F2(p, p)5d’ (5.2)
+ [Fa(p,p")7 + F3(p’, p)o’lm +
+Fy(p,p")(m&){(mé ')

¢ Transport coefficients are very complicated functions of the Fermi liquid har-
monics and scattering probabilities for quasi-particles.

Some of the differences are rather quantitative than qualitative.

o The polarization of spin system suppresses the s-wave scattering in dense sys-
tems too. But, since

— the F-function is not the scattering amplitude (vertex function) and is
only related to it via some integral equation.
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— the angle between momenta p,p’ of quasi- particles in the [F-function
F(p,p’) is not the same as the scattering angle in the vertex,

the suppression of the s-wave scattering does not mean a disappearance of any
harmonics in the F-function. However,

e One usually assumes that the harmonics of the vertex decrease with their num-
ber. Therefore, the disappearance of the main (zeroth) harmonic in the exact
vertex (not F-function!) should lead to some decrease in effective interaction.

All this means that the polarization leads to two competing effects. One is an
increase in density of states (here the effect of polarization is similar, but nol equal
to the effect of pressure), thus tending to increase the effective mass, sound velocity,
ete. However, some decrease in effective interaction related to the disappearance of
the s-wave scattering from the bare vertez, pushes the system in the opposite direction
towards a decrease in effective mass, sound velocity, etc., and towards increase in
transport coefficients. The second tendency is visible at least in current measurements
of viscosity (v eq. (5.1) is positive).

5.3 Spin dynamics and spin waves

At first glance, the macroscopic equations of motion (4.23)- (4.32) are quite general,
and the only thing one has to do is to express the molecular field {2 through the Fermi
liquid harmonics, and the relaxation time 7, through the scattering probabilities and
F-function. Then one ends up with a Silin-Leggett description of spin waves in spin-
polarized Fermi liquid.

A detailed analysis shows that such a procedure is absolutely legitimate if one
deals with a dilute system (like dilute *Hel-*He mixtures) at arbitrary polarizations
or dense Fermi liquid at low polarizations.

However, if the system is dense and the polarizations are high, the underlying
procedure becomes very problematic. T will list several of the problems. Some of
them are already understood, but some are still very unclear.

o The transverse relaxation time 7) does not necessarily contain a large factor
Tr/T)?. Therefore, 7, is not always large, and the applicability of the single-
particle (Landau) kinetic equation becomes questionable. Without the kinetic
equation, the (semi-) microscopic description may become ungrounded.

¢ One cannot simply ignore contributions to the spin current (4.24)
Dtrg M (5.3)

which are quadratic in magnetization/density.

e The non-local corrections to the Fermi liquid interaction are not negligible any
more. Here one should write the main equation of the Fermi liquid theory in
the form
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860 (p) = [ Fogr(P,B)oMsigmar (p')dI" (5.4)
+ f F)(p,p) Vidno (p)dI” +
f ED (P, p)ViV b (p)dD' + -
while F is the only function entering the standard theory.

e Though new Fermi liquid functions Fi(l), Ff:) in eq.(5.4) are also expressed
through the exact vertex part and its derivatives, some of their components
originate from the so-called off-shell terms and are complex. This leads to a
noticeable attenuation of spin waves.

In summary, one should conclude, that

s spin waves in dense and highly polarized Fermi liquid ®He are described by the
equations very different from those for either dilute systems, or systems with
low polarizations.

e spin waves in dense and highly polarized Fermi liqguids are accompanied by a
high atlenuation. '

One needs an experiment to make a positive conclusion whether the spin waves
can propagate in these conditions or not!

6 Conclusions. Experimental possibilities

At present we have a pretty reasonable quantitative understanding of most of the
phenomena in dilute polarized *Hel systems and a more qualitative description for
dense systems. As [ see it, we have the following main problems for theory of

¢ boundary effects including slip effects and boundary depolarization.
o superfluid transition temperature for *He in 3He-*He mixtures.
e spin waves in dense polarized Fermi liquids.

These problems, especially the last two, are very fundamental, difficult, and impor-
tant.

I would also like to list some of the experiments for *He- 1He mixtures which I fill
to be very interesting and enlightening (see also the end of section 2).

1. Accurate experiments at higher pressure.
2. Osmotic pressure.

3. Second sound velocity.
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10.

11.
12.
13.
14.

15.
16.

17.
18.

e R

Sound attenuation.

Viscosity.

Spin diffusion.

Magnetic susceptibility.

Systematic study of T} (in the bulk and at the walls).

These 8 experiments (described in more detail in section 2) have nothing to

do with spin polarization, but seem to be good sources of information on the
parameters of the mixtures.

. (Non-equilibrium) polarization of *He with a superleak
q p p

——

| 3#@.7 - “H-e.

¢ YHe
IE

Possible spontaneous penetration of *He atoms into solid 4He after a threshold
polarization of the melt around 30% at low temperatures.

Observation of large changes in the phase diagram with polarization.
Splitting of the sound attenuation peak in *Hel-*He at high frequencies.
Polarization dependences of the osmotic pressure and second sound velocity.

Systematic study of magnetokinetic effects (growth of transport coeflicient with
polarization).

Observation of anisotropy of spin diffusion.

Other NMR (spin echo and spin wave) experiments.

And the most exciting two:
Possibility of spin waves propagation in dense Fermi liquids.

Observation of *He superfluidity in *He-*He mixtures with and without polar-
ization.

47




10.

11.
12,
13.
14,

15.
16.

17.
18.

. Sound attenuation,

. Viscosity.

Spin diffusion.

. Magnetic susceptibility.

Systematic study of T; (in the bulk and at the walls).

These 8 experiments (described in more detail in section 2) have nothing to
do with spin polarization, but seem to be good sources of information on the
parameters of the mixtures.

(Non-equilibrium) polarization of 3He with 4 superleak

Possible spontaneous penetration of *He atoms into solid *He after a threshold
polarization of the melt around 30% at low temperatures.

Observation of large changes in the phase diagram with polarization.
Splitting of the sound attenuation peak in SHe?-*He at high frequencies.
Polarization dependences of the osmotic pressure and second sound velocity.

Systematic study of magnetokinetic effects (growth of transport coefficient with
polarization).

Observation of anisotropy of spin diffusion.

Other NMR (spin echo and SPIn wave) experiments.

And the most exciting two:
Possibility of spin waves propagation in dense Fermi liquids.

Observation of 2He superfluidity in *He-*He mixtures with and without polar-
ization.
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